Menu Nederlands

Compressing large amounts of netflow data using a pattern classification scheme

Publication of Creating 010
M.S. Bargh, Debora E. G. Moolenaar, Luc V. Zeeuw,de, Rémon Cornelisse, R. Choenni | Article | Publication date: 10 April 2016
The storage of large amounts of network data is a challenging problem, in particular if it still needs to be actively consulted as for example in the case of network forensics. Here we propose a method to compress NetFlow data while simultaneously adding domain knowledge. Our method is based on a pattern classification scheme by considering all flows from a single source IP address simultaneously. Each pattern can be described by at most 19 attributes that give a good statistical description of the original NetFlow data, while minimising information loss. We estimate that on average a factor of about 300 in storage space can be gained. The process is explained using a real world dataset from a large, high-speed, network, and a formal rationale is provided.

Author(s) - affiliated with Rotterdam University of Applied Sciences

For this publication

We use analytics and marketing cookies to improve the website.